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The effect of an impurity in the form of a small quantity of solid particles on the sta- 
bility of plane-parallel flows of an incompressible gas was studied in [1-4], wherein it was 
assumed that the particles are homogeneously distributed and do not produce motion of the 
gas. Below we will study stability of steady-state flow of a liquid with a solid impurity 
in a vertical plane layer. Liquid motion is produced by settling of the nonuniformly dis- 
tributed heavy impurity particles. The dependence of flow stability on the character of par- 
ticle distribution within the layer is demonstrated. 

i. We will consider a viscous incompressible liquid, containing an impurity in the form 
of nondeforming spherical solid particles of radius r and mass m. As in [i-6], we assume 
the liquid and impurity to be continuous media, interpenetrating and interacting with each 
other, and neglect interaction between the particles. The volume fraction of particles is 
assumed to be so low that the Einstein correction to liquid viscosity can be neglected. The 
density of the particle material Pl is much greater than the density of the carrier medium 
p. The left force acting on the particles is negligibly small, since it is proportional to 
the ratio P/Pl << i. Interaction between the phases as they undergo relative motion follows 
the Stokes law. 

The equations describing the behavior of an incompressible liquid with an impurity of 
heavy solid particles have the form [7, 8] 
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where u is the liquid velocity; p, its pressure; ~, kinematic viscosity; quantities with the 
subscript p refer to the particle cloud; N, number of particles per unit volume; ~v, time 
over the course of which the particle velocity decreases relative to that of the liquid by 
a factor of e times as compared to its original value; and g, acceleration of gravity. 

Let the liquid with impurity be located in a plane layer formed by two infinite vertical 
parallel planes x = +_h. The particles are distributed across the layer symmetrically rela- 
tive to the vertical z axis (Fig. i) according to a law 

a x  2ax  
4 ch ~ c h ~ - -  c h ~ - -  c h 2 a - -  2 

, (1.2) 
N (~ ,  x) = 4 ch ~ "  ch 2~ - -  3 

where ~ is a coefficient defining the impurity concentration near the boundary of the layer 
(in Fig. i, ~i = i, ~2 = 6, ~3 = 20). Equation (1.2) describes well the distribution of set- 
tling particles in a vertical channel observed experimentally in [8]. 

The settling particles, nonuniformly distributed across the channel, interact with the 
liquid and set it in motion. We find the steady-state distribution of liquid and particle 
velocities from Eq. (I.i) with the assumption that trajectories of both liquid and solid par- 
ticles are straight lines parallel to the z axis, closing at infinity above and below: 

d 2u 0 a i . ( i. 3) 
' %  - ~ . . . .  (U~o - Uo) - g ,  ~ (U~o - Uo) = g .  

p dz dx ~ '~v. 

Here uo and Up0 are the vertical velocity components and the subscript 0 indicates the steady- 
state solution of Eq. (i.I). 
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Fig. i Fig. 2 

The boundary conditions and closed flow condition are expressed by 

h 

u o (+_ h) = O, J" uodx = O. (1.4) 

Solving the problem of Eqs. 
liquid and particle cloud velocities over the layer section 

UO gh ~ B1 t 4 ax t c h - - T  ) + B2 - ~ -  Ba ' = v ~ -  c h a c h  h 4 

Uvo = uo - -  g'~,, VPo = c o n s t ,  

m , B 2 =  3 ( t 5  7 ) 
B1 = p (4 ch cr - -  ch 2a  - -  3) 4(z--r2 - ~  s h  2 ~  - -  - f  c h  2 a  - -  4 , 

Ba  = 4--!-5 s h  2 a  7 _  c h  2 a  - -  __i  
!6~r ~ 8o5 2 a ~ �9 

(1.3), (1.4), we obtain the steady-state distributions of 

(1 .5)  

As is evident from Eq. (1.5), under the action of the settling particles within the layer 
a liquid motion is established with two ascending and one descending flow, symmetric about 
the z axis (Fig. 2, where a I = 21, a 2 = 31, ~3 = 50). The intensity of the motion decreases 
with increase in ~ (as a + ~, u 0 § 0). 

2. We will study the stability of the steady-state liquid flow of Eq. (1.5), produced 
by settling of the nonuniformly distributed impurity particles. To do this we impose upon 
the steady-state velocity fields u0, Up0, pressure P0, and number of particles per unit volume 
N o , the small perturbations u, Up, p, N. 

We write the equations for the perturbations in dimensionless form, using the following 
units to dedimensionalize: for distance, h; time, h2/v; velocity, v/h; pressure pv2/h 2. 
Linearizing with respect to the perturbations, we obtain from Eq. (i.i) 
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2 r~ - P~ mN mN o 
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v 2 ' ~ 4 c h a - -  c h 2 a - -  3 ' 

where its is the particle settling velocity; Ga is the Galileo number; Xv is the dimensionless 
relaxation time; y is a unit vector directed vertically upward. 

215 



For a liquid with impurity [6], as for a pure liquid [9, i0], it has been demonstrated 
that the problem of stability with respect to spatial perturbations reduces to the problem 
of stability with respect to planar perturbations. In the case under consideration planar 
perturbations are more dangerous, i.e., they correspond to lower Galileo numbers, so that 
in studying stability it is sufficient to limit ourselves to the study of planar normal per- 
turbations : 

Up(X, z, t) ---- vp(x) exp  [ ik(z  - -  c t ) ] ,  ( 2 . 3 )  

N ( x ,  z, t) : n (x )  exp  [ ik ( z  - -  ct)  ], 

~(x,  z, t) = q ) (x )exp  [ ik ( z  - -  c t ) ] ,  

u~ = - -O~/Oz ,  u~ : O , /Ox .  

Here , is the flow function; ~, Vp, n are the perturbation amplitudes; k is the real wave 
number; c = Cr + ici is the complex phase velocity of the perturbations (Cr is the phase 
velocity, ci is the decrement). 

Substituting Eq. (2.3) in Eq. (2.1), we obtain the amplitude equation (with the prime 
denoting differentiation with respect to the coordinate x) 

(~v_2k~"+k~)+~k(~"--k,~) c--~o+V~;- ~ +ik~o~ = ~ , ~ z - -  + ~ ( ~ - - ~ ' ) + G a n ' ,  (2.4) 

ik~ -- r + U'po~v%x 

vp~ = ~k~  ( % o -  ~) - t ' vp~ = ~k~  ( % 0  - 0 - i '  

ikv pzN 0 -~- N'o% x -~ NoV px 
n = - -  ik (%0 - -  c) ) 

with boundary conditions 

~(+_i) = ~'(+i) = O. (2.5) 

The stability boundary for flow of the liquid with impurity Eq. (2.2) is determined by 
the condition ci = 0. The complex phase velocity c depends on the problem parameters Ga, k, 
~, Xv. To solve the boundary problem Eqs. (2.4) and (2.5), i.e., to determine the stability 
limits of the flow under consideration and calculate the decrement spectrum, we use the 
Runge-Kutta method of step-by-step integration. 
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3. Calculations performed for a wide range of values of the parameter ~ (I ~ ~ s 50) 
show that instability of steady-state motion of the liquid with heavy particles is caused 
by the interaction of oppositely directed flows: the descending central flow and two ascend- 
ing flows near the walls. Instability in the motion is produced by lower modes of hydro- 
dynamic perturbations, while the decrements of normal perturbations prove to be complex 
(traveling perturbations). Figure 3 shows the decement ci and phase velocity of perturba- 
tions as functions of the Galileo number (~ = 50, k = I, Tv = 0.92"10-2). 

The settling particles generate oscillatory (traveling) perturbations and encourage their 
transport. With decrease in the parameter ~ the stability of the flow induced by particle 
settling decreases. In fact, at low = (see Fig. i) the particle distribution in the layer 
has a sharply expressed "tonguelike" character and the flow intensity is high (see Fig. 2); 
decrease in ~ leads to an increase in flow velocity and disruption of stability. This con- 
clusion is confirmed by Fig. 4, which shows neutral stability curves (ci = 0, Tv = 0.92"10 -2 , 
~l = 21, ~2 = 31, ~3 = 37, ~4 = 40, a s = 45, ~6 = 50). The character of the heavy particle 
distribution across the layer affects the stability of the flow induced by the impurity in- 
tensely. 
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